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Lorentz in October 1910

H.A. Lorentz by Jan Veth

Origins of spectral geometry:

the high overtones behave inversely proportional to the
volume.



Weyl in February 1911

N(Λ) = #wave numbers ≤ Λ

∼ ΩdVol(M)

d(2π)d
Λd

Evidence by the parabolic shapes (
√
Λ):



Mark Kac in 1966

“Can one hear the shape of a drum?”

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave
numbers k in the Helmholtz equation

∆Mu = k2u

determine the geometry of M?



Isospectral drums!

... so the answer to Kac’s question is no
and more information is needed...



Spectral description of geometry: distance
Noncommutative geometry (Alain Connes)

▶ Distance d(x , y) between two points is usually defined as

the smallest of the arclengths (computed using the metric) of curves connect-
ing x and y .

▶ But it can also be defined as
the largest of differences |f (x)− f (y)| for functions f with gradient |∇f | ≤ 1.

d(x , y) = sup
∥[DM ,f ]∥≤1

|f (x)− f (y)|

x y x y

f

Combination (C∞(M), L2(SM),DM)
allows for reconstruction of geometry



Analysis: Dirac operator

Recall that k2 is an eigenvalue of the Laplacian in the Helmholtz equation.

▶ The Dirac operator is a ‘square-root’ of the Laplacian, so that its spectrum give
the wave numbers k .

▶ First found by Paul Dirac in flat space, but exists on any Riemannian spin
manifold M.



The circle
▶ The Laplacian on the circle S1 is given by

∆S1 = − d2

dt2
; (t ∈ [0, 2π))

▶ The Dirac operator on the circle is

DS1 = −i
d

dt

with square ∆S1 .
▶ The eigenfunctions of DS1 in L2(S1) are the complex exponential functions

e int = cos nt + i sin nt; (n ∈ Z)

and [DS1 , f ] = df
dt , a bounded operator on L2(S1) for smooth f .



The 2-dimensional torus

▶ Consider the two-dimensional torus T2 parametrized by two angles t1, t2 ∈ [0, 2π).

▶ The Laplacian reads

∆T2 = − ∂2

∂t21
− ∂2

∂t22
.

▶ It seems difficult to construct a differential operator that squares to ∆T2 :(
a
∂

∂t1
+ b

∂

∂t2

)2

= a2
∂2

∂t21
+ 2ab

∂2

∂t1∂t2
+ b2

∂2

∂t22

▶ This puzzle was solved by Dirac who considered complex matrices:

a =

(
0 1
−1 0

)
; b =

(
0 i
i 0

)
then a2 = b2 = −1 and ab + ba = 0



▶ The Dirac operator on the torus is

DT2 =

(
0 ∂

∂t1
+ i ∂

∂t2
− ∂

∂t1
+ i ∂

∂t2
0

)
,

which satisfies (DT2)2 = − ∂2

∂t21
− ∂2

∂t22
.

▶ The spectrum of the Dirac operator DT2 is

{
±
√

n21 + n22 : n1, n2 ∈ Z
}
;

and ∥[DT2 , f ]∥ = ∥f ∥Lip.

More generally, a Dirac operator exists on spin manifolds as a differential operator
acting in L2(SM) and square D2

M = ∆M + 1
4κ.



Example: spectral truncation of the circle

▶ Eigenvectors of DS1 are Fourier modes ek(t) = e ikt for k ∈ Z
▶ Orthogonal projection Pn onto spanC{e1, e2, . . . , en}
▶ The space PnC (S1)Pn is an operator system

▶ Any such T = PnfPn can be written as a Toeplitz matrix

PnfPn ∼
(
tk−l

)
kl
=


t0 t−1 ··· t−n+2 t−n+1
t1 t0 t−1 t−n+2

... t1 t0
. . .

...

tn−2

. . .
. . . t−1

tn−1 tn−2 ··· t1 t0


▶ Evaluation at points of S1 are replaced by certain positive linear functionals ϕx

(states) from PnC (S1)Pn to C.



Distance function for spectral truncations of the circle

d(ϕx , ϕy ) ≤ dS1(x , y) ≤ d(ϕx , ϕy ) + 2γn

And more examples include (quantum) fuzzy spheres, Fourier truncations, truncations
of tori (Leimbach–vS23, RU) ...



Courses at Radboud Uni

Currently teaching:

▶ Inleiding Wiskunde

▶ Lie Groups (MM, with Erik Koelink)

▶ Noncommutative Geometry (MM)

and other relevant courses:

▶ (Intro to) Functional Analysis

▶ Operator Algebras

▶ Differential/Riemannian Geometry


