

Geometry emerging from spectra

Walter van Suijlekom

Lorentz in October 1910

H.A. Lorentz by Jan Veth

Origins of spectral geometry:

the high overtones behave inversely proportional to the volume.

Weyl in February 1911

$$egin{aligned} & \mathcal{N}(\Lambda) = \# ext{wave numbers} & \leq \Lambda \ & \sim rac{\Omega_d ext{Vol}(\mathcal{M})}{d(2\pi)^d} \Lambda^d \end{aligned}$$

Evidence by the parabolic shapes $(\sqrt{\Lambda})$:

Mark Kac in 1966

"Can one hear the shape of a drum?"

Or, more precisely, given a Riemannian manifold M, does the spectrum of wave numbers k in the Helmholtz equation

$$\Delta_M u = k^2 u$$

determine the geometry of M?

Isospectral drums!

... so the answer to Kac's question is **no** and more information is needed...

Spectral description of geometry: distance

Noncommutative geometry (Alain Connes)

- Distance d(x, y) between two points is usually defined as the smallest of the arclengths (computed using the metric) of curves connecting x and y.
- ▶ But it can also be defined as the largest of differences |f(x) - f(y)| for functions f with gradient $|\nabla f| \le 1$.

$$d(x,y) = \sup_{\|[D_M,f]\| \le 1} |f(x) - f(y)|$$

Combination $(C^{\infty}(M), L^2(S_M), D_M)$ allows for reconstruction of geometry

Analysis: Dirac operator

Recall that k^2 is an eigenvalue of the Laplacian in the Helmholtz equation.

- The Dirac operator is a 'square-root' of the Laplacian, so that its spectrum give the wave numbers k.
- First found by Paul Dirac in flat space, but exists on any Riemannian spin manifold *M*.

The circle

▶ The Laplacian on the circle S¹ is given by

$$\Delta_{\mathbb{S}^1}=-rac{d^2}{dt^2}; \qquad (t\in [0,2\pi))$$

► The Dirac operator on the circle is

$$D_{\mathbb{S}^1} = -irac{d}{dt}$$

with square $\Delta_{\mathbb{S}^1}$.

▶ The eigenfunctions of D_{S^1} in $L^2(S^1)$ are the complex exponential functions

$$e^{int} = \cos nt + i \sin nt;$$
 $(n \in \mathbb{Z})$

and $[D_{S^1}, f] = \frac{df}{dt}$, a bounded operator on $L^2(S^1)$ for smooth f.

The 2-dimensional torus

Consider the two-dimensional torus T² parametrized by two angles t₁, t₂ ∈ [0, 2π).
 The Laplacian reads

$$\Delta_{\mathbb{T}^2} = -rac{\partial^2}{\partial t_1^2} - rac{\partial^2}{\partial t_2^2}$$

► It seems difficult to construct a differential operator that squares to $\Delta_{\mathbb{T}^2}$:

$$\left(a\frac{\partial}{\partial t_1}+b\frac{\partial}{\partial t_2}
ight)^2=a^2rac{\partial^2}{\partial t_1^2}+2abrac{\partial^2}{\partial t_1\partial t_2}+b^2rac{\partial^2}{\partial t_2^2}$$

This puzzle was solved by Dirac who considered complex matrices:

$$a = egin{pmatrix} 0 & 1 \ -1 & 0 \end{pmatrix}; \qquad b = egin{pmatrix} 0 & i \ i & 0 \end{pmatrix}$$

then $a^2 = b^2 = -1$ and ab + ba = 0

► The Dirac operator on the torus is

$$D_{\mathbb{T}^2} = egin{pmatrix} 0 & rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} \ -rac{\partial}{\partial t_1} + i rac{\partial}{\partial t_2} & 0 \end{pmatrix},$$

which satisfies $(D_{\mathbb{T}^2})^2 = -\frac{\partial^2}{\partial t_1^2} - \frac{\partial^2}{\partial t_2^2}$. • The spectrum of the Dirac operator $D_{\mathbb{T}^2}$ is

$$\left\{\pm\sqrt{n_1^2+n_2^2}:n_1,n_2\in\mathbb{Z}\right\};$$

and $||[D_{\mathbb{T}^2}, f]|| = ||f||_{\text{Lip}}$.

More generally, a Dirac operator exists on spin manifolds as a differential operator acting in $L^2(S_M)$ and square $D_M^2 = \Delta_M + \frac{1}{4}\kappa$.

Example: spectral truncation of the circle

• Eigenvectors of D_{S^1} are Fourier modes $e_k(t) = e^{ikt}$ for $k \in \mathbb{Z}$

- Orthogonal projection P_n onto span_{$\mathbb{C}} {<math>e_1, e_2, \ldots, e_n$ }</sub>
- The space $P_n C(S^1) P_n$ is an **operator system**
- Any such $T = P_n f P_n$ can be written as a **Toeplitz matrix**

$$P_{n}fP_{n} \sim (t_{k-l})_{kl} = \begin{pmatrix} t_{0} & t_{-1} & \cdots & t_{-n+2} & t_{-n+1} \\ t_{1} & t_{0} & t_{-1} & t_{-n+2} \\ \vdots & t_{1} & t_{0} & \ddots & \vdots \\ t_{n-2} & \ddots & \ddots & t_{-1} \\ t_{n-1} & t_{n-2} & \cdots & t_{1} & t_{0} \end{pmatrix}$$

Evaluation at points of S¹ are replaced by certain positive linear functionals φ_x (states) from P_nC(S¹)P_n to C.

Distance function for spectral truncations of the circle

$d(\phi_x,\phi_y) \leq d_{S^1}(x,y) \leq d(\phi_x,\phi_y) + 2\gamma_n$

And more examples include (quantum) fuzzy spheres, Fourier truncations, truncations of tori (Leimbach–vS23, RU) ...

Courses at Radboud Uni

Currently teaching:

- Inleiding Wiskunde
- ► Lie Groups (MM, with Erik Koelink)
- ► Noncommutative Geometry (MM)

and other relevant courses:

- ► (Intro to) Functional Analysis
- Operator Algebras
- ► Differential/Riemannian Geometry